Perform a hypothesis test using the asymptotic-formulae approach
(https://arxiv.org/abs/1007.1727), calculating the significiance of
a discovery.
This action does the same as CalculateLimit, but uses the
CommonStatTools AsymptoticsCLsRunner as a backend. It is only
available when CommonStatTools are available.
+CalculateLimitToys {
+HWWHighMass {
<nPoints = 20, nToys = 50000, point = "1000">
}
}
The options include:
dataset: The name of the dataset to fit.point: name of the point (e.g. mass value)modelConfig (default=ModelConfig): The name of the ModelConfig to be used.calculatorType: (default=0) Type of the calculator to be used
testStatType: (default=2). Type of the test statistic to be used
poi.min: minimum value of the POI to be usedpoi.max: minimum value of the POI to be usednPoints: number of points to evalute the POI foruseCLs: (default=true) toggle whether to use CLs confidenceLevel: (default=0.95) The confidence level for which to calculate the limitoptimize (default=true): optimize evaluation of test statisticuseVectorStore (default=true): convert data to use new roofit data storegenerateBinned (default=true):generate binned data setsnToysRatio (default=2): ratio Ntoys S+b/ntoysBpoi.min (default=-1): minimum of POI to be usedpoi.max (default=-1): maximum of POI to be useduseProof (default=false): use Proof to parallelizeuseProofWorkers (default=0): number of Proof workersdetailed (default=false): enable detailed outputreuseAltToys (default=false): reuse same toys for alternate hypothesis (if set one gets more stable bands)rebuildToys (default=false): re-do extra toys for computing expected limits and rebuild test stat distributions (N.B this requires much more CPU (factor is equivalent to nToyToRebuild) nToysRebuild (default=100): number of toys to rebuildrebuildParamValues (default=0): minimizerType (default=""): minimizer type (default is what is in ROOT::Math::MinimizerOptions::DefaultMinimizerType()initialFit (default=-1): do a first fit to the model (-1 : default, 0 skip fit, 1 do always fit)asimovBins (default=0): number of bins in observables used for Asimov data sets (0 is the default and it is given by workspace, typically is 100)